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The trial wave function 

= (2)-1/2(a 2 + b2) 112 

gives the classical electron density, p. Contrary to the common belief, this 
electron density gives a very substantial covalent bonding for H § and H2. The 
stabilization energy comes from a favorable kinetic energy. This in turn arises 
because (~p/Oz) has opposite signs for electron densities centered on each atom 
in the critical bonding region between the nuclei. 
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A molecular orbital between two identical atoms, A and B, may be written as 

~o = (2 + 2S)-1/2(a + b), (1) 

with a and b normalized atomic orbitals. The charge density per electron is then 

p = (2 + 2S)-1(a2 + 2ab + b2), (2) 

where �89 2 + b 2) is called the quasiclassical charge density. The remaining charge 
density is called the overlap, or exchange, or interference density. I t  is commonly 
believed that the latter density leads to covalent bonding. It  is thought that a 
classical superposition of atomic charge densities can give, at most, only a very 
minor stabilization [1]. 

* Dedicated to Prof. Hermann Hartmann on the occasion of his 65th birthday. 
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Surprisingly, this turns out  not  to be the case. Consider the trial wave function 

~o = (2)-1/2(a 2 + b2) lm, (3) 

which gives the quasi-classical electron density. Our examples will be H~  and H2, 
where a = (a3/~r) lm e-~rA and b = (as/~r) 1/z e-~'s,  a being the effective nuclear 
charge. 

The energies of  both  H~- and Hz are readily calculated. The potential energy is 
particularly easy because of  the one-center nature of  p. The kinetic energy is put  
in the form [2] 

1 f Vp-Vp dr. <T> = -~ p (4) 

In confocal elliptic coordinates, p is given by 

p = ~ w 3  ,-(a- w<a + ~) + e -  w(a- u)), (5) 

where w = aR. The kinetic energy is 

a2 a2w e-W ~2W2 e-W f ~  
= - -  ~ sech (/~w)/~ 2 dtz. (6) <T)  2 2 t an -  1 (sinh w) + 8 __ 1 

The last term can be evaluated by expanding scch (/xw), for  w > 1 or w < 1. For  

[ w____~ 2 zr 3 
- -  tan-1  (sinh w) - - ~  + e- '~ + 2w + 2) 

the former  case 

a 2 c~ 2 e - w 

<T> = 2 2w 

+ e-aW(-~ + - ~  + 2 )  - . - ] .  (7) 

There is a reduction in the kinetic energy due to an interaction of  the two charge 
densities. I f  they did not  interact, the kinetic energy would be simply a2/2. The 
reduction, - A T ,  is zero at R = 0 and R = ~ ,  and has a maximum value o f  
0.0710a 2 at w = 1.7 (atomic units). Figure 1 shows - A T / a  2 plotted against w. 

For  both  H~- and H2 the total energy is given by E = a2Az + aA2, where A1 and 
A2 are functions of  w (the internuclear repulsion is expressed as a/w). For  each 
value of  w, ( ~ E / ~ )  = 0 gives the best value of  ~, and also ensures that  the virial 
theorem is satisfied. 
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Fig. 1. Plot of kinetic energy lowering, 
-AT /a  2, versus w = aR 
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The minimum energy for H +2 comes at w = 2.35, ~ = 1.126, and R0 = 2.09 a.u. 
The energy is -0 .556  a.u., which gives a binding energy of 1.51 eV. This may be 
compared to 2.79 eV, experimental, and to 2.35 eV, the value for the best MO 
function of the form given by (1). 

For H2 the best energy for (3) comes at w = 1.6, ~ = 1.130, Ro = 1.42 a.u. The 
energy is - 1.097 a.u., with a binding energy of 2.64 eV. The experime/atal value is 
4.75 eV and the best MO of form (1) gives 3.47 eV. 

The origin of the bonding energy for (3) lies in the lowering of the kinetic energy 
factor Az. This permits a higher value of ~ so that ( T )  is actually increased relative 
to the separated atoms, but (V)  is decreased. The favorable kinetic energy factor 
results from the small values of the gradient, (~p/~z), in the region between the 
nuclei. 

J 

These results provide strong support for Ruedenberg's views concerning the nature 
of the chemical bond. He has consistently stressed the overriding importance of 
the lowering of the kinetic energy factor in molecule formation [1, 3]. He has also 
pointed out that the accumulation of charge in the overlap region is actually anti- 
bonding as far as potential energy is concerned. The results also agree with 
Ruedenberg in assigning the bonding to the bond parallel component of the kinetic 
energy Goddard and Wilson have shown that it is the contragradience (opposite 
signs for (~o/Oz) or orbitals on different atoms) which is responsible [4]. The same 
contragradience exists in the bonding region for electron densities centered on 
different atoms. 

We can improve the energy by modifying (3) so that more electron density is 
placed in the region between the nuclei. One way to do this is to float the two charge 
densities, a 2 and b 2, towards each other [5]. If  this is done for H~-, the energy is 
lowered about 0.37 eV by floating each orbital by 0.11 a.u. towards the bond 
center. For H2, the energy can be lowered by 0.88 eV by floating 0.13 a.u. 

The floating orbital method operates almost entirely by lowering the potential 
energy. It would be more efficient to polarize the atomic orbitals so that it is the 
kinetic energy that changes. This can be done by using a Guillemin-Zener type of 
function [6]. 

p = N(e-2~rA-2~'rB + e-2'~B-2'~'~) -- N e  -~'~ cosh (w'/0. (8) 

This function can readily be used for the energy of H~. The minimum comes at 
w = 2.7 and w' = w/2. These numbers correspond to a = 1.017 and a' = 0.339. 
The equilibrium distance, Ro, is 1.99 and the bonding energy is 2.78 eV. Thus like 
the Guillemin-Zener function (where (8) is 9 and not p), essentially exact answers 
are found. 

It is interesting that w = w' corresponds to p of Eq. (3), and w' = 0 corresponds 
to the density function 

t~  3 

p = - ~  ab (9) 
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which is the overlap charge density of  the usual MO function (1). I f  c~ is held fixed, 
this function gives the lowest kinetic energy for any value of w. However, the 
potential energy is also the highest. The best value for (9) corresponds to w = 2.4, 

= 1.348, R0 = 1.78 a.u., and bonding energy = 2.20 eV. The value of w' = w/2 
represents a density function intermediate between (3) and (9) and similar to the 
usual MO density (2). It  is not advantageous to use the function (8) for H~, since 
the electron density is no longer a sum of one-center densities, and the potential 
energy calculation becomes difficult. 

Of  course (3) cannot be seriously considered as a good wavefunction, since it is 
poorer than the usual molecular orbital. Also the quasi-classical charge density is 
far from satisfying the Hel lmann-Feynman theorem. Finally, it is not clear what 
the anti-bonding orbital corresponding to (3) would be. 

However, it appears that all of  these objections could be overcome by adding 
additional one-center charge densities to the bonding region. For example, an 
atomic density centered at the mid-point of the bond could give a better energy and 
also help to balance the electrostatic forces. Such a function makes the kinetic 
energy difficult to evaluate in closed form, but numerical integration should be 
relatively easy. 

I t  seems clear that a sum of one-center charge densities can be constructed which 
matches as closely as desired any given MO charge density. By a suitable subtrac- 
tion of one-center charge densities, anti-bonding MO's  could also be matched. 
Kinetic energies would require numerical integration, but potential energies, 
including interelectronic repulsions, would be rather easy to calculate. 

Finally, it may be mentioned that there is considerable interest in finding new ways 
to evaluate many-electron kinetic energies from one-electron density functions [7]. 
A successful solution to this problem would greatly enhance the attractiveness of  
one-center charge densities as basis sets for p. 
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